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Abstract

In this work, we performed an analysis of the networks of interactions between drugs and

their targets to assess how connected the compounds are. For our purpose, the interactions

were downloaded from the DrugBank database, and we considered all drugs approved by

the FDA. Based on topological analysis of this interaction network, we obtained information

on degree, clustering coefficient, connected components, and centrality of these interactions.

We identified that this drug-target interaction network cannot be divided into two disjoint and

independent sets, i.e., it is not bipartite. In addition, the connectivity or associations between

every pair of nodes identified that the drug-target network is constituted of 165 connected

components, where one giant component contains 4376 interactions that represent 89.99%

of all the elements. In this regard, the histamine H1 receptor, which belongs to the family of

rhodopsin-like G-protein-coupled receptors and is activated by the biogenic amine histamine,

was found to be the most important node in the centrality of input-degrees. In the case of cen-

trality of output-degrees, fostamatinib was found to be the most important node, as this drug

interacts with 300 different targets, including arachidonate 5-lipoxygenase or ALOX5,

expressed on cells primarily involved in regulation of immune responses. The top 10 hubs

interacted with 33% of the target genes. Fostamatinib stands out because it is used for the

treatment of chronic immune thrombocytopenia in adults. Finally, 187 highly connected sets

of nodes, structured in communities, were also identified. Indeed, the largest communities

have more than 400 elements and are related to metabolic diseases, psychiatric disorders

and cancer. Our results demonstrate the possibilities to explore these compounds and their

targets to improve drug repositioning and contend against emergent diseases.

Introduction

The increase of de novo drug discovery has been significant in recent decades, although the

pace of advances in genomics and pharmacogenomics has decreased as a consequence of a

lack of investment in pharmaceutical research and development [1,2]. In addition, the long

process to release a new drug to the market, once it is approved by the FDA, is an expensive

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247018 March 17, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Galan-Vasquez E, Perez-Rueda E (2021) A

landscape for drug-target interactions based on

network analysis. PLoS ONE 16(3): e0247018.

https://doi.org/10.1371/journal.pone.0247018

Editor: Ivan Kryven, Utrecht University,

NETHERLANDS

Received: July 31, 2020

Accepted: January 30, 2021

Published: March 17, 2021

Copyright: © 2021 Galan-Vasquez, Perez-Rueda.

This is an open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files

Funding: Dirección General de Asuntos del

Personal Académico-Universidad Nacional
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process for the pharmaceutical industry [3,4]. In light of these challenges, exhaustive analysis

based on existing drugs has emerged as a strategy to improve the positioning of drugs for

which new clinical indications have been identified can decrease development risks and costs,

as well as shorten the time between drug discovery and availability on the market [5,6].

To date, the collection of drugs and their targets have been deposited in diverse databases,

and it is known that most drug targets are cellular proteins, such as enzymes, G-protein-cou-

pled receptors (GPCRs), ion channels, transporters, and nuclear hormone receptors. The main

goal of these collections is to treat or diagnose a disease through selective interaction with

chemical compounds [7,8]. In general, on the basis of ligand-binding studies, these drug tar-

gets can be grouped into ~130 protein families; whereas ~3,000 targets for small-molecule

drugs have been predicted for the human genome [9].

Conventionally, the discovery of drugs has followed the well-accepted paradigm of one

drug—one target—one disease, which searches to identify the most specific drugs to act

against a specific target for an individual disease [10]. However, diseases are caused by com-

plex biological processes, which can be resistant to the activity of any single drug. This

approach is called “polypharmacy” and has modified the conventional paradigm to multi-

drugs—multi-targets—multi-diseases [11]. There is debate on the use of each of these

approaches, as the “one drug—one target” paradigm can lead to highly potent and specific

(single-target) treatments that may be better tolerated due to the absence of off-target side

effects [12]. In contrast, the multi-drug approach is based on an understanding that, due to

compensatory mechanisms and redundant functions, biological systems might develop resis-

tance to the disturbances caused by a single drug [13].

This new paradigm has resulted on one hand in a significant decrease in the rate that new

drug candidates are being translated and, on the other hand, in an increase in studies focused

on new targets for existing drugs. These approaches include the drug side-effect similarity, dis-

ease networks, chemical structure information, protein-protein sequence similarity, drug-tar-

get interactions, and integrative networks propagation methods, among others [14–17].

Recently, diverse computational methods have been proposed to analyze datasets of interac-

tions. In particular, the interactions of drugs and targets can be conceptualized in the form of a

network, that conventionally has been described with a bipartite network structure, i.e., is a

graph where the vertices can be divided into two disjoint sets such that all edges connect a ver-

tex in one set to a vertex in another set [18–20]. In complex networks such as this, different

topological measures allow describing underlying properties of biological relationships, such

as, node degree that identifies the most connected nodes; node centrality that identifies rele-

vant nodes in the networks; or communities that are subsets of densely connected nodes that

may be related to similar biological processes. In this context, diverse metrics have been pro-

posed to identify non-overlapping [21–23] and overlapping communities [24–26], where each

node belongs to a unique cluster or each node is allowed to belong to more than one commu-

nity at the same time, respectively.

In this work, we evaluated the global interactions between drugs and their targets to deter-

mine how connected are the compounds. This study is based on the assumption that similar

drug molecules are likely to interact with similar targets. To this end, the interactions down-

loaded from the DrugBank database, considering drugs approved by the FDA, were obtained

and analyzed exhaustively. From this information, diverse findings are reported, such as the

network is not bipartite, i.e., it cannot be divided into two disjoint and independent sets. In

addition, the connectivity or associations between every pair of nodes shows that the drug-tar-

get network is constituted by 165 connected components, where one giant component con-

tains 4376 interactions that represent 89.99% of all the elements. The histamine H1 receptor,

which belongs to the family of rhodopsin-like GPCRs and is activated by the biogenic amine
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histamine, was found as the most important node in the centrality of input-degrees. In the case

of the centrality of output-degrees, fostamatinib was found to be the most important node,

with interactions with 300 different targets, including arachidonate 5-lipoxygenase. The top 10

hubs interact with 33% of the target genes. From these, fostamatinib stands out since it is used

for the treatment of chronic immune thrombocytopenia in adults. Finally, highly connected

sets of nodes can be structured in communities, and the largest communities have more than

400 elements; these are related to metabolic diseases, psychiatric disorders and cancer.

Materials and methods

Dataset of drugs and targets

In order to analyze the interactions of drugs and their targets, we searched for data from the

DrugBank database (https://www.drugbank.ca/; version 5.1.4, released 2019-07-02), which

includes 2634 drugs [27]. The database comprises DrugCard entries with more than 200 data

fields, with half of the information devoted to drug/chemical data and the other half devoted

to drug target or protein data. From these entries, we only considered targets because they are

defined as macromolecules or small molecules to which a given drug interacts with, resulting

in an alteration of the normal function of the bound molecule and desirable therapeutic effects

or unwanted adverse effects. We excluded carriers, transporters and enzymes because they are

not altered in their functions as occurs in targets. For instance, a carrier binds to a drug and

modifies its pharmacokinetics or may facilitate transport in the bloodstream or across cell

membranes. A transporter refers to a kind of endogenous, membrane-bound, protein-based

structure that physically moves drugs across cell membranes into and out of cells; and an

enzyme facilitates the occurrence of a metabolic reaction by interacting with and transforming

a drug or chemical to one or more specific metabolites. Therefore, we considered a dataset of

2689 different targets interacting with 2186 FDA-approved biotech drugs in the United States.

Topological analysis

We applied the node connectivity to examine the network topological property difference of

drugs and targets. In this regard, the drug-target interactions were defined as a directed net-

work described by the equation G = (V, E), where nodes (V) represent drugs and targets and

the edges (E) represent their interactions. Then, the network was characterized by topological

metrics, such as node degree, clustering coefficient, centrality, hubs, and communities [28].

In brief, the degree of a node (K) is defined as the number of interactions that it has with

other nodes. In directed networks, input degree (Kin) and output degree (Kout) are defined as

the number of arrows that enter and leave a node, respectively; these values correspond to the

number of drugs that affect a certain target and the number of targets that a drug can affect. It

is known that many biological networks present a degree distribution that follows the approxi-

mate form of a power-law distribution, P(k) = Ax−γ, where A is a constant that warrants that

the P(k) values are less than one and the degree exponent γ is often between 2 and 3 [29]. This

distribution is characterized by the fact that most nodes have few connections and a small set

of nodes are highly connected; these high degree nodes, termed hubs, are topologically and

functionally important to the network structure.

The clustering coefficient Ci of the node vi was calculated as follows: Ci = 2Ei/(ki)(ki-1),

where Ei is the number of edges between the neighbors of vi and indicates the probability that

two nodes with a common neighbor in a graph are interconnected, i.e., it quantifies the extent

to which the local neighborhood of a node is as a member of a group of nodes. In this context,

the clustering coefficient takes values between 0 and 1, where 1 means that we found nodes

whose neighbors are connected among them forming complete graphs [28]. The shortest path
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length is the minimal number of edges needed to reach a node from the other node through a

path along the edges of the network [28].

Centrality is a function, C, which assigns every v 2 V of a given graph G the value C(v) 2 R.

As we are interested in the ranking of the node of the given graph G, we chose the convention

that node u is more important than another node, v, if C(u) > C(v). There are many measures

of centrality, including degree, closeness, betweenness, and eigenvector centrality.

The simplest centrality is the degree centrality, which gives for every vertex v a measure of

the relative connectivity of a vertex in the network [28]. It is calculated as the degree of the ver-

tex over n-1, this is the maximum possible degree in a network with n vertices [28].

Closeness centrality of a vertex v is defined as the reciprocal of the sum of the length of the

shortest paths between the vertex v and all other vertices u in the graph, and it is calculated as:

CCloðvÞ ¼
n � 1

Xn� 1

V� 1
dðu; vÞ

where d(u,v) is the shortest-path distance between v and u, and n is the number of vertices in

the network. The largest value indicates the node that minimizes the sum of all distances to all

other nodes [28].

The betweenness centrality of a vertex v is the sum of the fraction of all-pairs shortest paths

that pass-through v, it is calculated as

CBetðvÞ ¼
X�

st;2V

sðs; tjvÞ
sðs; tÞ

where σ(s,t|v) denote the number of shortest paths between s and t that use v as an interior ver-

tex. The highest values correspond to nodes that best measure the ability of a vertex to monitor

communication between other vertices, a value of zero is assigned to nodes that do not partici-

pate as interior vertices in any shortest path communication between other vertices [28].

Eigenvector centrality designates the significance of a vertex proportionally to the impor-

tance of their neighbors, then a vertex is significant because it is connected to many vertices or

because it is connected to vertices with large eigenvector centralities. The value of this central-

ity in each vertex v is obtained by using the adjacency matrix B, their largest eigenvalue λn and

an initial vector xv(0), we get the value in v by the iteration of the function

xvðt þ 1Þ ¼
1

ln

X�

u

: BxvðtÞ

The sum is over all the vertices u in the network. A connected network ensures that we can

obtain a fixed value xv after a finite number of iterations. A usual x(0). in computational algo-

rithms is the eigenvector associated with λn. This centrality gives values for every vertex and

the vertices that are reachable in less steps receive a low value. On the other hand, high central-

ity value for central vertices that require more steps [28].

Connectivity

The connectivity in a network refers to the associations between each pair of nodes. These con-

nections can be via a direct link or indirect through a series of intermediate connections. In

this context, the connected component is a set of nodes that are linked to each other by paths,

and this gives us information about how connected the elements in a network and their mod-

ule structure are [28].
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Community identification

Given a network G, a community C is defined as a set of distinct nodes: C = {v1,v2,. . .,vn},

where n is the node in the network. Many metrics tend to be described to identify communi-

ties [30–32], we used the multilevel algorithm described by [23], which assigns a different com-

munity to each node of the network, and then a node is moved to the community of one of its

neighbors with which it achieves the highest positive contribution to modularity. The above

step is repeated for all nodes until no further improvement can be achieved. Then, each com-

munity is considered a single node on its own and the second step is repeated until there is

only a single node left or when the modularity cannot be increased in a single step. To this

end, we use a random decomposition of the nodes and a resolution of one. This parameter

changes the size of the identified communities [33].

Functional annotation analysis

To identify the disease, and disease class, and metabolic pathways enriched in each set of

nodes as hubs and communities, we used the Database for Annotation, Visualization and Inte-

grated Discovery (DAVID; http://david.abcc.ncifcrf.gov/), which is a gene functional classifica-

tion system that integrates a set of functional annotation tools [34]. We refer as enrichment

analysis to the statistical method which identifies groups of targets or drugs that are over-rep-

resented in a large set of ranked elements, and may be related to diseases.

Algorithms and implementation

Algorithms of degree, degree distributions, clustering coefficient, centralities and communities

were implemented in Python 3.6 (https://www.python.org/) and coregulations and dominate

sets were implemented in Octave (https://www.gnu.org/software/octave/), and are available at

S1 File. In Fig 1, we show the schematic workflow for the analysis.

Results and discussion

General features of the network of drug-target interactions

In order to evaluate the associations between drugs and their targets, the information obtained

from the DrugBank database was organized into a target interaction network. To this end, we

considered the interactions approved by the FDA and commercialized in the U.S. From this

approach, a total of 9286 interactions between 2186 drugs and 2689 targets were analyzed (S1

Table). It is interesting that adenosine, cystine, copper, dabigatran etexilate, digoxin, glutathi-

one, iron, lactose, nitric oxide (NO), methotrexate, prothrombin, somatostatin, and tyrosine

compounds were identified as acting as both drugs and targets. For instance, NO that acts as a

neuromodulator, regulating the hypothalamic release of neuropeptides [35], was identified by

one side, as a drug of three targets, Guanylate cyclase soluble subunit alpha-2 (with an Heme

binding function), Metallothionein-1A (a zinc ion binding), and Indoleamine 2,3-dioxygenase

1 (Tryptophan 2,3-dioxygenase activity); and by other side, is target of albumin that results

from its contribution to plasma colloid oncotic. Probably, albumin form can be used as a NO

traffic protein [36–38].

This finding suggests that the network is not bipartite, i.e., it cannot be divided into two dis-

joint and independent sets. Therefore, based on the interaction network, topological analyses

were achieved and are discussed in the following paragraphs, including their degree, clustering

coefficient, connected components, and centrality.
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Network topological analysis: Degree, clustering coefficient, connected

components, and centralities

In order to determine the number of drugs that affect a target (Kin) and the number of targets

affected by a drug (Kout), the network was considered a directed network. Based on this net-

work, it was found that each node is connected on average with 3.8 neighbors. In this regard,

this network has a consistent distribution of scale-free of nodes degree, with a γ< 2 (γin = 1.6,

γout = 1.47), suggesting that the highest-degree node influences a large fraction of all nodes in

the network (Fig 2A and 2B) [29]. Concerning the degree, the network exhibits a decreasing

value for C(k), indicating that small groups or modules of elements are well-connected,

whereas when the group increases in size the elements are progressively less connected.

In addition, the connectivity or associations between every pair of nodes showed that the

drug-target network is constituted by 164 connected components, where one giant component

contains 4376 interactions, which represent 89.99% of all the elements (Fig 2C). The giant

component contains targets primarily related to metabolism, cardiovascular diseases, and can-

cer, among others. In contrast, the highest proportion of related components (94) have a size

of two elements, i. e. they only relate a drug to its target. The isolated connected components

contain targets related to diverse organisms, such as the bacteria Escherichia coli, Pseudomonas
aeruginosa, and Mycobacterium tuberculosis, and human herpesvirus, among other pathogens.

Moreover, degree, closeness, betweenness, and eigenvector centrality were calculated as

centrality measures to identify the most important nodes in the drug-target network

Fig 1. Schematic workflow of the drug-target network analysis. See text for details.

https://doi.org/10.1371/journal.pone.0247018.g001
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(Table 1). These metrics are based on the connectivity of the nodes and the shortest paths

between each pair of nodes. In this regard, the histamine H1 receptor was found to be the

most important node in the centrality of input-degrees. This receptor belongs to the family

of rhodopsin-like GPCRs, and it is activated by the biogenic amine histamine. The H1

receptor is linked to an intracellular G-protein (Gq) that activates phospholipase C and the

inositol triphosphate (IP3) signaling pathway [39]. In general, these receptors are widely

distributed in the brain, smooth muscles from airways, cardiovascular system endothelial

cells, and lymphocytes [40]. From the network, it was identified that this node is affected by

93 different drugs, including the antipsychotic drugs loxapine, amitriptyline, clozapine, ari-

piprazole lauroxil, ziprasidone, aripiprazole, and amoxapine, among others; suggesting a

low specificity of these drugs to their targets. In this context, these antipsychotic drugs have

also been associated with metabolic side effects, including insulin resistance, glucose intol-

erance, overeating, increased adiposity, metabolic syndrome, and diabetes, as a

Fig 2. Topological estimations of the network of drugs and targets. A) Input-degree distribution [P(Kin)]. B) Output-degree distribution [P(Kout)]. C) Distribution of

the number of nodes in connected components [P(n)], where n represents the number of nodes and P(n) is the probability of finding a component with a specific size. D)

Distribution of size communities in the networks, where P(Community) is the probability of finding a community with a specific size.

https://doi.org/10.1371/journal.pone.0247018.g002
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consequence of the blocking of H1-histamine receptors [41]. In the case of the centrality of

output-degrees, fostamatinib was found to be the most important node, as it interacts with

300 different targets, such as arachidonate 5-lipoxygenase, epidermal growth factor receptor

2, and vascular endothelial growth factor receptor 2. Fostamatinib is a small-molecule

spleen tyrosine kinase (Syk) inhibitor for the treatment of rheumatoid arthritis, autoim-

mune thrombocytopenia, autoimmune hemolytic anemia, IgA nephropathy, and lym-

phoma [42,43]. Therefore, the large diversity of targets could be because Syk has roles in

cellular proliferation, differentiation, survival, immune regulation, and cytoskeletal rear-

rangements during phagocytosis [43,44].

Furthermore, the closeness centrality of node v, defined as the reciprocal of the sum of

the length of the shortest paths between the node v and all other nodes in the graph, i.e.,

nodes that are able to spread the information very efficiently through the network, identi-

fied the histamine H1 receptor with a centrality value of 0.019, it is the node that minimizes

the sum of distances to the other nodes. In contrast, copper with a centrality value of 6.4e-

06, was identified as the most significant in terms of the betweenness centrality of node v,

defined as the sum of the fraction of all-pairs shortest paths that pass-through v, i.e., the

influence of a vertex over the flow of information between every pair of vertices under the

assumption that information primarily flows over the shortest paths between them. Copper

is a trace element that is important for the proper functioning of diverse enzymes, including

cytochrome c oxidase, monoamine oxidase, and superoxide dismutase [45], and as such it is

essential to human health. Finally, the 5-hydroxytryptamine receptor 2A, which belongs to

the serotonin receptor family and is a GPCR [46], is a receptor for various drugs and psy-

choactive substances, including mescaline, psilocybin, 1-(2,5-dimethoxy-4-iodophenyl)-

2-aminopropane (DOI), and lysergic acid diethylamide (LSD) [47], was the most important

node when eigenvector centrality was calculated, with a centrality value of 0.2, where nodes

that have a high eigenvector centrality value are connected to many nodes that in turn are

well-connected (Table 1).

Table 1. The top 10 most influential nodes according to their centralities.

Level Input-Degree centrality Output-Degree

centrality

Closeness centrality Betweenness

centrality

Eigenvector centrality

1 Histamine H1 receptor (93) Fostamatinib (300) Histamine H1 receptor (0.019) Copper (6.4e-06) 5-Hydroxytryptamine receptor 2A

(0.2)

2 Muscarinic acetylcholine receptor

M1 (87)

Copper (147) Muscarinic acetylcholine receptor

M1 (0.018)

Prothrombin (3.8e-06) Alpha-1A adrenergic receptor

(0.19)

3 DNA (79) NADH (144) DNA (0.016) Iron (2.2e-06) D(2) dopamine receptor (0.19)

4 Alpha-1A adrenergic receptor

(79)

Zinc (124) Alpha-1A adrenergic receptor

(0.016)

Glutathione (1.8e-06) Muscarinic acetylcholine receptor

M1 (0.17)

5 D(2) dopamine receptor (76) Zinc acetate (124) D(2) dopamine receptor (0.016) Lactose (3.8e-07) Histamine H1 receptor (0.17)

6 Muscarinic acetylcholine receptor

M2 (74)

Zinc chloride (124) Muscarinic acetylcholine receptor

M2 (0.015)

Somatostatin (2.1e-07) 5-Hydroxytryptamine receptor 2C

(0.17)

7 5-Hydroxytryptamine receptor

2A (72)

Glutamic Acid (70) 5-Hydroxytryptamine receptor 2A

(0.015)

Dabigatran etexilate

(2.1e-07)

Loxapine (0.16)

8 Muscarinic acetylcholine receptor

M3 (70)

Flavin adenine

dinucleotide (70)

Muscarinic acetylcholine receptor

M3 (0.014)

Adenosine (1.7e-07) 5-Hydroxytryptamine receptor 1A

(0.16)

9 Prostaglandin G/H synthase 2

(66)

Pyridoxal phosphate

(66)

Prostaglandin G/H synthase 2

(0.013)

Cystine (1.7e-07) Alpha-1B adrenergic receptor

(0.15)

10 Estrogen receptor alpha (64) Citric acid (65) Estrogen receptor alpha (0.013) Tyrosine (1.7e-07) Alpha-2A adrenergic receptor

(0.15)

�The numbers in parentheses correspond to the value defined by each metric. The largest value corresponds to the most central node.

https://doi.org/10.1371/journal.pone.0247018.t001
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Ten hubs define the main structure of the network

In order to identify the most connected nodes associated with the drug-targets network, hubs

were determined. To this end, a hub was defined as a drug with connections with many other

nodes, i.e., a large output-degree. In follow, we describe the top of 10 hubs that interact with

33% of the target genes.

Fostamatinib, which is used for the treatment of chronic immune thrombocytopenia in

adults [48], and interacts with 300 targets, was found as the most connected drug. We identi-

fied that their targets are related mainly to 10 classes of enriched diseases, among which are

metabolic diseases, cancer, chemidependency, and pharmacogenomic, neurological, renal,

immune, infectious, and psychiatric diseases. Likewise, we identified that these targets are

related to 101 metabolic pathways: MAPK, neurotrophin, ErbB, GnRH and Ras signaling path-

ways, axon guidance, and focal adhesion, among others (Fig 3 and S2 Table).

Copper identified as a hub, is an essential cofactor for multiplex B redox enzymes involved

in respiratory oxidation in both humans and animals [49,50], and it interacts with 147 differ-

ent target genes mainly associated with cancer and neurological, immune, infectious, and

renal diseases, among others.

The other drug also identified as a hub is the reduced nicotinamide adenine dinucleotide

(NADH), that is is a small molecule and cofactor of cellular metabolism with a central role in

cellular metabolism and energy production as hydride-accepting and hydride-donating coen-

zymes [51,52] (Fig 3 and S2 Table). NADH interacts with 144 target genes associated with

functional classes as: infection, neurological, pharmacogenomics, cancer, aging-related, and

psychiatric diseases; probably because NADH impacts different metabolic pathways, such as

oxidative phosphorylation, Parkinson’s and Alzheimer’s diseases, among others (Fig 3 and S2

Table).

Zinc, zinc chloride, and zinc acetate are drugs identified in this set of hubs. Zinc is an essen-

tial trace element for the appropriate functioning of diverse enzymes and plays an important

role in protein synthesis and in cell division. These drugs interact with 124 targets associated

with metabolism, cardiovascular, cancer, neurological, and immune responses. It impacts dif-

ferent metabolic pathways, such as the complement and coagulation cascades, infections by

the pathogen bacterium Staphylococcus aureus, and systemic lupus erythematosus, among oth-

ers (Fig 3 and S2 Table). Recently, this element has been associated with the pathophysiology

and treatment of affective disorders [53].

In addition, Glutamic acid, another drug identified in this set, has been described as the

most common excitatory neurotransmitter in the central nervous system. It is conjectured that

glutamate is involved in cognitive functions like learning and memory, though excessive

amounts may cause neuronal damage associated with diseases like amyotrophic lateral sclero-

sis, lathyrism, and Alzheimer’s disease. Glutamic acid interacts with 70 targets associated with

diverse diseases, such as chemical dependency and neurological infection. Its role impacts dif-

ferent metabolic pathways, including metabolic pathways, glutamatergic synapse, neuroactive

ligand-receptor interaction, alanine, aspartate, and glutamate metabolism, and nicotine addic-

tion (Fig 3 and S2 Table).

Another drug found as a hub is Flavin adenine dinucleotide (FAD). This drug is the substit-

uent at position 10 of the flavin nucleus 5’-adenosyldiphosphoribityl group. FAD is approved

for use in Japan under the trade name Adeflavin as an ophthalmic treatment for vitamin B2

deficiency diseases such as keratitis and blepharitis [54]. FAD interacts with 70 targets and is

associated with diverse diseases, such as cancer, neurological diseases, and chemical depen-

dency. Its role impacts different metabolic pathways including valine, leucine, and isoleucine

degradation; glycine, serine, and threonine and fatty acid metabolisms (Fig 3 and S2 Table).
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Pyridoxal phosphates (PLP) is the active biochemical form of pyridoxine. It is a coenzyme

of amino acid metabolism, particularly for tryptophan and methionine. PLP can be used as a

dietary supplement in cases of vitamin B6 deficiency and it is a naturally occurring substance

evaluated as a cryoprotectant in myocardial infection, ischemia, and strokes [55]. PLP interacts

with 66 targets that are mainly associated with infections and neurological, psychiatric, and

developmental diseases, among others. In this regard, the main enriched metabolic pathways

identified in the target dataset are Biosynthesis of antibiotics, amino acids, and Glycine, serine,

and threonine, and Carbon metabolism (Fig 3 and S2 Table).

Finally, the Citric acid that is formed in the tricarboxylic acid cycle or may be introduced

with diet, and it is a key intermediate in metabolism, was also found in this set of hubs. The

salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability

[56]. It interacts with 65 targets; however, we did not identify enriched disease classes and met-

abolic pathways associated with those targets.

Identification of communities in the network

In order to identify the most highly related elements, we analyzed the network in terms of

communities. In this context, a community was defined as a subset of nodes densely connected

in comparison with the rest of the network, and as such its identification may help to uncover

a priori relations not previously identified [57]. To this end, we used the multilevel algorithm

described by Blondel et al. in 2008 [23], that outperforms in comparison with other algorithms

as Label propagation [58], Walktrap [59], Spinglass [60], and Edge betweenness algorithms

[21], on the set of benchmarks, by taking both accuracy and computing time into account,

although the modularity-based methods are known to suffer from the resolution limit of mod-

ularity, as it has been recently identified [30]. To estimate the accuracy of this method, New-

man and Girvan (2004) introduced a quantitative measure for the quality of network division,

called modularity (represented by the Q function) [61]. Thus, a Q = 0 suggests that the number

of within-community edges is random, whereas if values close to 1, which is the maximum,

indicate networks with strong community structure.

Based on this algorithm, we found that the drug-target network contains 187 communities,

with modularity of Q = 0.823 (Fig 4), where around 8% of the communities have more than

100 nodes and the largest one ha 471 nodes, whereas 50% are small communities with 2 ele-

ments (Fig 2D). From this, in Table 2, the top 10 largest communities are shown; they are

mainly related to type 2 diabetes, edema, and rosiglitazone; schizophrenia; Alzheimer’s disease;

chronic renal failure; and cancer (S3 Table).

Identification of drug coregulation

In order to identify those drugs that are coregulated in the network, we defined two drugs as

being coregulated when they are adjacent to each other and linked to the same target. In this

context, the top 10 drugs that share the same target are prescribed for psychiatric diseases such

as depression, bipolar disorder, schizophrenia, and psychological depression (Table 3 and S4

Table). An example of such drugs is amoxapine, which coregulates diverse targets with 382

other drugs. This is because their targets are mainly receptor proteins such as the 5-hydroxy-

tryptamine receptor, histamine H1, and H4 receptor, dopamine receptor, alpha-adrenergic

receptors, and muscarinic acetylcholine receptors. Although amoxapine is a tetracyclic

Fig 3. The top metabolic pathways related to the targets affected by hub drugs. The 10 richest metabolic pathways were selected for each

hub and were hierarchically clustered based on Euclidean distance and Ward’s method for linkage analysis. Each row represents the KEGG

pathways and each column represents hub drugs.

https://doi.org/10.1371/journal.pone.0247018.g003
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antidepressant used in patients with neurotic or reactive depressive disorders as well as endog-

enous and psychotic depressions; the other drugs with which it shares targets are related to

alcohol dependence, treatment of allergies and hay fever, viral infection, prostatic hyperplasia,

allergic conjunctivitis, and schizophrenia, among others. This finding suggests cross-recogni-

tion between amoxapine and the other compounds, as a consequence of the receptor they are

recognizing; i.e. histamine H1 and H2, and dopamine D1 and D2. In this regard, it has been

described that these receptors are co-localized and co-mediate the histamine-induced excita-

tion on the two types of neurons [62]. In addition, these receptors are also recognized by other

addictive substances, like alcohol or cannabinoids [63]. Therefore, based on the identification

of common targets between these drugs, new therapies can be proposed using the existing

drugs, as well as, the combination therapies that use pairwise or multiple drugs, being more

efficient than monotherapy [64]. Additionally, combination therapy suggests that making side

effects less likely, because the doses are lower than in monotherapy therapies [65]. In this con-

text, drug combinations have boosted clinical outcomes for many notoriously complex dis-

eases, such as hypertension, cancer and viral infection, via synergistically targeting multiple

disease proteins or pathways [66].

In the same context, loxapine, which is coregulated with 363 other drugs, is prescribed for

manifestations of psychotic disorders such as schizophrenia; whereas the other coregulated

drugs include bepotastine (administered for the treatment of itchy eyes), ergotamine (for

migraine disorders), and lofexidine (for opioid withdrawal). Mainly, these drugs interact with

various receptors, such as the muscarinic acetylcholine receptor, hydroxytryptamine receptor,

and sodium-dependent dopamine transporters. This result opens the possibility to explore

similarities at the receptor recognition by drugs with not similar effects. In this regard, the

dopamine, histamine, and 5-hydroxytryptamine receptors, recognized by diverse drugs

already described, share similarity at the structural level, belonging to the superfamily of G-

protein-coupled receptor, rhodopsin-like [67].

Meanwhile, lamotrigine is coregulated with 339 other drugs. It is used in the treatment of

both epilepsy and as a mood stabilizer in bipolar disorder; whereas the other coregulated drugs

include tetrabenazine (prescribed for chorea associated with Huntington’s disease), celiprolol

Fig 4. Communities in the drugs-targets network. A network of 4862 nodes and 9286 edges were obtained from the DrugBank database that was clustering in

communities. Each community is represented in a different color, and the labels are proportional to the output degree.

https://doi.org/10.1371/journal.pone.0247018.g004

Table 2. The top 10 largest communities according to their number of elements.

Community ID� Number of nodes in the community Most enrichment disease class �� Number of related enrichment diseases��

3 471 Metabolic and psych 363

1 409 Metabolic and cancer 90

31 382 Pharmacogenomic and cancer 661

34 368 Metabolic and cancer 329

45 367 Metabolic and chemdependency 105

13 335 Metabolic and pharmacogenomic 136

48 230 Infection and neurological 76

66 182 Metabolic and cardiovascular 7

29 145 Cardiovascular and metabolic 19

39 145 Metabolic and cardiovascular 14

� ID is automatically generated for each community.

�� Diseases and disease classes with the highest number of related objectives and P-value < 0.05.

https://doi.org/10.1371/journal.pone.0247018.t002
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(medication in the class of beta-blockers, used in the treatment for the management of mild to

moderate blood pressure), and dextropropoxyphene (for relief of mild to moderate pain),

among others. These drugs interact with diverse targets, such as the GABA-A receptor, kappa-

type opioid receptor, histamine H1 receptor, and voltage-dependent R-type calcium channel

subunit alpha-1E; with no obvious similarity. We consider that these relations could be associ-

ated with new interactions to be further evaluated.

In summary, it is necessary to consider the consequences of two drugs having the same tar-

get protein, such as xylometazoline, prescribed for nasal congestion, and loxapine, a drug used

to treat schizophrenia. In this regard, xylometazoline is an alpha-2A adrenergic receptor ago-

nist, whereas loxapine is an alpha-2A adrenergic receptor binder, both receptor proteins

belong to the superfamily of G-protein-coupled receptor, rhodopsin-like (IPR000276) [67,68],

we hypothesize that receptor similarity is influencing the cross-recognition of diverse drugs

that must be extensively explored.

To determine a minimum dominant set of drugs that can affect the network, we selected

the giant component with 1930 drugs, 2445 targets, and 8948 edges. Subsequently, we carried

out an iterative random exclusion of one drug at a time for 100,000 times, if the eliminated

node did not decrease the interaction with all the targets, it was eliminated from the dominant

set and if this decreased the prediction of the targets, the node was preserved. From this analy-

sis, we identified a subset of 433 out of 1930 drugs that is susceptible to affecting the giant com-

ponent of the network, representing a good opportunity for further exploration of new

interactions. Hereof, new interactions could be identified on the basis for network-based drug

repositioning, which considers the proteins that are localized in the corresponding disease

module o sub-network within the human Protein–protein interactions network [69], and pro-

teins that serve as drug targets for a specific disease may also be suitable for another disease

Table 3. Top 10 drugs that most co-regulated.

Drug Treatment� Number of coregulated

drugs��
Most enrichment disease class���

Amoxapine Major depressive disorder 382 Psych, metabolic, neurological and chemidependency

loxapine Schizophrenia 363 Metabolic, psych, neurological, pharmacogenomic, and

chemidependency

Lamotrigine Epilepsy and bipolar disorder 339 Psych, neurological, metabolic, pharmacogenomic, and

chemidependency

Imipramine Depression and certain anxiety disorders 332 Psych, chemidependency, metabolic, pharmacogenomic, and

neurological

Desipramine Depression 322 Psych, pharmacogenomic, metabolic, neurological,

chemidependency, and cardiovascular

Doxepin Depressive disorder, anxiety disorders, chronic hives,

and trouble sleeping

317 Psych, metabolic, pharmacogenomic, chemidependency, and

neurological

Chlorpromazine Schizophrenia 313 Chemidependency, metabolic, psych, pharmacogenomic, and

neurological

Nortriptyline Depression 308 Psych, pharmacogenomic, chemidependency, metabolic, and

neurological

Clozapine Schizophrenia and Parkinson’s disease 307 Metabolic, psych, neurological, pharmacogenomic, and

chemidependency

Amitriptyline Depressive disorder 301 Psych, metabolic, pharmacogenomic, neurological, and

chemidependency

� The main treatment for which the drug is prescribed.

�� Number of drugs with which one drug shares one or more targets.

��� Diseases class with the highest number of related objectives and P-value < 0.05.

https://doi.org/10.1371/journal.pone.0247018.t003
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and drugs [70]. This approach has the advantage of mitigating the costs and risks associated

with the early development stage, and shortening routes to approval for therapeutic indication

[71–73].

Conclusions

Recent advances in the understanding of the interactions of drugs and targets provide a frame-

work to explore probable new interactions previously not detected. In this work, we identified

an interesting set of drugs in the network. The first one corresponds to the drugs that interact

with the most targets, where the most connected is fostamatinib, a drug used for the treatment

of chronic immune thrombocytopenia in adults. Indeed, this compound affects a large number

of targets, inhibiting signal transduction by Fcγ receptors involved in the antibody-mediated

destruction of platelets in chronic ITP or in the inhibition of T- and B-lymphocyte activation

by T-cell receptors and B-cell receptors, respectively [74,75].

Additionally, nine identified hubs (drugs) acting as cofactors or coenzymes, are related to

dietary and nutritional therapies: copper, NADH, zinc, zinc acetate, zinc chloride, glutamic

acid, FAD, pyridoxal 5’ phosphate, and citric acid. Their high connectivity may be due to their

importance at the metabolic level; in the case of copper, it is incorporated into many oxidase

enzymes as a cofactor; or Zinc, that is associated with hundreds of proteins that transport and

traffic this element. Recently, Zinc exhibits antiviral activity against a variety of viruses, such as

herpes simplex virus and the common cold [76], opening the opportunity to evaluate this ele-

ment against viral diseases.

Glutamic acid is the most widespread neurotransmitter in brain function, as an excitatory

neurotransmitter, and as a precursor for the synthesis of GABA in GABAergic neurons. Pyri-

doxal 5’-phosphate (PLP) is necessary for the enzymatic reaction governing the release of glu-

cose from glycogen and acts as a coenzyme in all transamination reactions and in some

oxidation and deamination reactions of amino acids. Finally, citric acid is a weak acid that is

formed in the tricarboxylic acid cycle, used as an anticoagulant, it is one of the active ingredi-

ents in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA.

In the same sense, we identified highly connected sets of nodes that were structured in com-

munities; the largest communities have more than 400 elements and are related to metabolic

diseases, such as psychiatric disorders and cancer. In this regard, drugs used for schizophrenia

treatment exhibit a wide diversity of targets, suggesting that diverse side effects could emerge.

The FDA has only approved 12 new antivirals from 2012 to 2017, thus network-based strat-

egies can help this lack of drugs. In this context, a group of 316 drugs of interest are related to

virus infections; they are related to 824 targets (Fig 5). Based on this approach, it was identified

that the main drugs are grouped in the communities 0 and 3, which share the target with other

related drugs to type 2 diabetes, edema; prostate cancer; chronic renal failure; breast cancer,

and colorectal cancer.

Finally, we identified a subset of 25 drugs which have been reported for the tentative treat-

ment of SARS-CoV-2 (https://clinicaltrials.gov/), which includes atorvastatin, chloroquine,

darunavir, hydroxychloroquine, interferon beta-1b, lopinavir, dexamethasone, and tocilizu-

mab, among others (Fig 5). In particular, dexamethasone that reduces deaths caused by

SARS-CoV-2 [77], interacts with diverse targets, associated to steroid or nuclear hormone

receptors as Glucocorticoid receptor or Nuclear receptor subfamily 0 group B member 1 and

Nuclear receptor subfamily 1 group I member 2, and Annexin A, and, Nitric oxide synthase,

involved in catalyzing the production of NO from L-arginine. NO is an important cellular sig-

naling molecule [78]. Thus, our approach opens the possibility to explore these compounds

and their targets to contend against viral diseases, such as those re-emergent viruses, such as
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Zika, Ebola, and Middle East respiratory syndrome coronavirus that are characterized by pan-

demic potential [79]. Thus, different scenarios of antiviral drug repurposing have been previ-

ously suggested, such as the: same target—new virus; i. e. when an antiviral drug with a

specific viral or cellular function/pathway target is found to possess activity against other

viruses; such as favipiravir used against influenza virus showed repurposing potential against

Ebola and Zika. A second case involves, same target—new indication, that occurs when a phar-

macological target is found to be essential in a pathogenic process associated with a viral infec-

tion, and the approved drug can be also exploited as an antiviral therapeutic agent (new

indication); such as occurs with the anticancer drug imatinib that also acts against pathogenic

coronaviruses [80]. Finally, a new target—new indication, which occurs when an approved

drug with established bioactivity in a specific pathway or mechanism is found to have a new

molecular target which is essential for virus replication; such as the antimicrobial agents (e.g.,

teicoplanin, and ivermectin, and nitazoxanide) that also inhibit the viral replication in infected

cells [81,82].

We consider that the approach described in this work could be also extended to the identifi-

cation of possible microRNAs targets, such as it has been previously proposed for Alzheimer’s

disease [83] and prostate cancer [84].

Fig 5. Viral drugs-targets network. A total of 1140 nodes and 1386 edges were related to viral diseases. Targets are indicated as

blue nodes, and drugs are the red nodes; Drugs related to Coronavirus infections are indicated as yellow nodes.

https://doi.org/10.1371/journal.pone.0247018.g005
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